Inducing regulation of any digraphs
نویسندگان
چکیده
For a given structure D (digraph, multidigraph, or pseudodigraph) and an integer r large enough, a smallest inducing r-regularization of D is constructed. This regularization is an r-regular superstructure of the smallest possible order with bounded arc multiplicity, and containing D as an induced substructure. Sharp upper bound on the number, ρ, of necessary new vertices among such superstructures for n-vertex general digraphs D is determined, ρ being called the inducing regulation number of D. For ∆̃(D) being the maximum among semi-degrees in D, simple n-vertex digraphs D with largest possible ρ are characterized if either r ≥ ∆̃(D) or r = ∆̃(D) (where the case r = ∆̃ is not a trivial subcase of r ≥ ∆̃).
منابع مشابه
More skew-equienergetic digraphs
Two digraphs of same order are said to be skew-equienergetic if their skew energies are equal. One of the open problems proposed by Li and Lian was to construct non-cospectral skew-equienergetic digraphs on n vertices. Recently this problem was solved by Ramane et al. In this paper, we give some new methods to construct new skew-equienergetic digraphs.
متن کاملThe power digraphs of safe primes
A power digraph, denoted by $G(n,k)$, is a directed graph with $Z_{n}={0,1,..., n-1}$ as the set of vertices and $L={(x,y):x^{k}equiv y~(bmod , n)}$ as the edge set, where $n$ and $k$ are any positive integers. In this paper, the structure of $G(2q+1,k)$, where $q$ is a Sophie Germain prime is investigated. The primality tests for the integers of the form $n=2q+1$ are established in terms of th...
متن کاملOn spectral radius of strongly connected digraphs
It is known that the directed cycle of order $n$ uniquely achieves the minimum spectral radius among all strongly connected digraphs of order $nge 3$. In this paper, among others, we determine the digraphs which achieve the second, the third and the fourth minimum spectral radii respectively among strongly connected digraphs of order $nge 4$.
متن کاملVertex Removable Cycles of Graphs and Digraphs
In this paper we defined the vertex removable cycle in respect of the following, if $F$ is a class of graphs(digraphs) satisfying certain property, $G in F $, the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $. The vertex removable cycles of eulerian graphs are studied. We also characterize the edge removable cycles of regular graphs(digraphs).
متن کاملLinear Sphericity Testing of 3-Connected Single Source Digraphs
It has been proved that sphericity testing for digraphs is an NP-complete problem. Here, we investigate sphericity of 3-connected single source digraphs. We provide a new combinatorial characterization of sphericity and give a linear time algorithm for sphericity testing. Our algorithm tests whether a 3-connected single source digraph with $n$ vertices is spherical in $O(n)$ time.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Applied Mathematics
دوره 157 شماره
صفحات -
تاریخ انتشار 2009